Structural properties of fourth-generation composite femurs and tibias.
نویسنده
چکیده
The purpose of this study was to measure the structural properties of the latest design (fourth-generation) of composite femurs and tibias from Pacific Research Laboratories, Inc. Fourth-generation composite bones have the same geometries as the third-generation bones, but the cortical bone analogue material was changed to one with increased fracture and fatigue resistance, tensile and compressive properties, thermal stability, and moisture resistance. The stiffnesses of the femurs and tibias were tested under bending, axial, and torsional loading, and the longitudinal strain distribution along the proximal-medial diaphysis of the femur was also determined. The fourth-generation composite bones had average stiffnesses and strains that were for the most part closer to corresponding values measured for natural bones, than was the case for third-generation composite bones; all measurements were taken by the same investigator in separate studies using identical methodology. For the stiffness tests, variability between the specimens was less than 10% for all cases, and setup variability was less than 6%.
منابع مشابه
Structural properties of a new design of composite replicate femurs and tibias.
The purpose of this study was to compare the structural properties of a new vs. established design of composite replicate femurs and tibias. The new design has a cortical bone analog consisting of short-glass-fiber-reinforced (SGFR) epoxy, rather than the fiberglass-fabric-reinforced (FFR) epoxy in the currently available design. The hypothesis was that this new cortical bone analog would impro...
متن کاملBiomechanical Evaluation of the Depth of Resection During Femoral Neck Osteoplasty for Anterior Impingement Following Slipped Capital Femoral Epiphysis.
BACKGROUND Femoroacetabular impingement as a result of slipped capital femoral epiphysis (SCFE) has been treated traditionally with a proximal femoral osteotomy, but open and arthroscopic femoral osteoplasty is becoming increasingly popular. Cam lesions result from excess bone primarily at the anterolateral femoral head-neck junction. SCFEs result from posterior and inferior slippage of the fem...
متن کاملMechanical Validation of Fourth-Generation Composite Femur and Tibia Models
INTRODUCTION: Mechanical analogue composite bone models have been used as cadaveric bone substitutes in a wide variety of biomechanical tests. The objective of this study was to validate the diaphyseal structural properties in terms of flexural rigidity, ultimate bending strength, axial stiffness, ultimate compression strength, ultimate torsional strength, torque angle at ultimate torsional str...
متن کاملStudying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)
In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...
متن کاملFructus Ligustri Lucidi modulates estrogen receptor expression with no uterotrophic effect in ovariectomized rats
BACKGROUND Accumulating evidence suggests that Fructus Ligustri Lucidi (FLL) plays a beneficial role in preventing the development of osteoporosis. However, the effects of FLL on estrogen receptor (ER) α and ERβ expressions remain unknown. Therefore, in the current study we attempted to probe into the effects of FLL on ERα and ERβ expressions in femurs, tibias and uteri of ovariectomized (OVX) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 41 15 شماره
صفحات -
تاریخ انتشار 2008